Independent definition of reticulations on residuated lattices
نویسنده
چکیده
A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime filters of A and the topological space Spec(L) consisting of prime filters of L. The concept of reticulation are generalized to non-commutative rings, MV-algebras ([1]), BL-algebras ([3]), quantale ([2]) and so on. Since these algebras are axiomatic extensions of residuated lattices which are algebraic semantics of so-called fuzzy logic, it is natural to consider properties of reticulations on residuated lattices. In 2008, Mureşan has published a paper about reticulations on residuated lattices and she has provided an axiomatic definition of reticulations on residuated lattices, in which five conditions are needed. In this short note, we show that only two independent conditions of reticulation are enough to axiomatize reticulations on residuated lattices and also prove that reticulations on residuated lattices can be considered as homomorphisms between residuated lattices and bounded distributive lattices.
منابع مشابه
Simple axiomatization of reticulations on residuated lattices
We give a simple and independent axiomatization of reticulations on residuated lattices, which were axiomatized by five conditions in [C. Mureşan, The reticulation of a residuated lattice, Bull. Math. Soc. Sci. Math. Roumanie 51 (2008), no. 1, 47--65]. Moreover, we show that reticulations can be considered as lattice homomorphisms between residuated lattices and b...
متن کاملThe Reticulation of a Residuated Lattice
In this paper we define the reticulation of a residuated lattice, prove that it has “good properties“, present two constructions for it, prove its uniqueness up to an isomorphism, define the reticulation functor and give several examples of finite residuated lattices and their reticulations.
متن کاملTopological Residuated Lattices
In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملOn residuated lattices with universal quantifiers
We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...
متن کامل